
Supplemental Methods

Theory

Time-complexity

We introduced the definition of the entropy-scaling similarity search data

structure in Figure 1. For ease of analysis, we will work in a high-dimensional

metric space and consider the database as a set D of n unique points in that

metric space. Define BS(q, r) = {p ∈ S : ||q − p|| < r}. The similarity

search problem is thus to compute BD(q, r) for a query q and radius r. Note

however that the metricity requirement is needed only for a 100% sensitivity

guarantee; other distance functions can be used, but result in some loss in

sensitivity. However, regardless of the distance function chosen, there cannot

be a loss of specificity; false positives will never be introduced because the

fine search is just the original search function on a smaller subset of the

database.

A set C of k cluster centers are chosen such that no cluster has radius

greater than a user-specified parameter rc and no two cluster centers are

within distance rc of one another. The data structure then clusters the points

in the set by assigning them to their nearest cluster center. Overloading

notation a bit, we will identify each cluster with its center, so C is also

the set of clusters. For a given similarity search query for all items within

distance r of a query q, this data structure breaks the query into coarse

and fine search stages. The coarse search is over the list of cluster centers,

S1

returning BC(q, r + rc). Let

F =
∪

c∈BC(q,r+rc)

c,

the union of all the returned clusters. By the Triangle Inequality, BD(q, r) ⊆

F , which combined with F ⊆ D implies that BF (q, r) = BD(q, r). Thus, a

fine search over the set F will return all items within radius r of q.

Note that we require the metricity requirement only for the Triangle In-

equality. It turns out that many interesting distance functions are not met-

rics, but still almost satisfy the Triangle Inequality, which is nearly sufficient.

More precisely, if a fraction α of the triples in S do not satisfy the Triangle

Inequality, then in expectation, we will have sensitivity 1 − α. As shown

in the results, empirically, this loss in sensitivity appears to be low and can

likely be ameliorated by increasing the coarse search radius.

Provided the fractal dimension of the database is low, this data struc-

ture allows for similarity search queries in time roughly linear in the metric

entropy of the database. Additionally, without increasing the asymptotic

time-complexity, this data structure can also be stored in an information

theoretic entropy-compressed form.

Note that entropy-scaling data structures are distinct from both succinct

data structures and compressed data structures. Succinct data structures

are ones that use space close to the information-theoretic limit in the worst

case while permitting efficient queries; i.e. succinct data structures do not

depend on the actual entropy of the underlying data set, but have size-

dependence on the potential worst-case entropy of the data set (Jacobson,

1988). Compressed (and opportunistic) data structures, on the other hand,

S2

bound the amount of the space used by the entropy of the data set while per-

mitting efficient queries (Grossi & Vitter, 2005; Ferragina & Manzini, 2000).

Entropy-scaling data structures are compressed data structures, but are dis-

tinct, as unlike entropy-scaling data structures, compressed data structures

do not measure time-complexity in terms of metric entropy. Additionally,

existing compressed data structures such as the compressed suffix array and

the FM-index are designed for the problem of pattern matching (Grossi &

Vitter, 2005; Ferragina & Manzini, 2000). While related to similarity search,

pattern matching does not admit as general of a notion of distance as the

similarity search problem. While compressed sensing has also been applied

to the problem of finding a representative set of genes for a collection of

expression samples (Prat et al., 2011), compressed sensing is distinct from

entropy-scaling data structures.

The primary advance of entropy-scaling data structures is that

they bound both space and time as functions of the data set entropy

(albeit using two different notions of entropy).

Complexity bounds

We first define the concept of metric entropy and entropy dimension in

the usual manner:

Definition 1 ((Tao, 2008) Definition 6.1). Let X be a metric space, let D

be a subset of X, and let ρ > 0 be a radius.

• The metric entropy Nρ(D) is the fewest number of points x1, . . . , xn ∈

D such that the balls B(x1, ρ), . . . B(xn, ρ) cover D.

S3

Definition 2 ((Falconer, 1990)). The Hausdorff dimension of a set D is given

by

dimHausdorff(D) := lim
ρ→0

log Nρ(D)

log 1/ρ

Unfortunately, as D is a finite, discrete, set, the given definision always

gives dimHausdorff(D) = 0. However, we are only interested in scaling behav-

iors around large radii, so instead we use:

Definition 3. Define fractal dimension d of a set D at a scale [ρ1, ρ2] by

d = max
ρ∈[ρ1,ρ2]

 log Nρ(D)

Nρ1 (D)

log ρ
ρ1

Intuitively, this means that when we double the radii, the metric entropy,

or number of covering spheres needed, decreases by a multiplicative factor of

2d. On average, this also means that when we double the radius of a sphere

around a point, the number of points in the larger sphere is roughly the

number of points in the smaller sphere multiplied by 2d, because otherwise the

spheres could not cover the space. This latter behavior is what we measure

when we talk about local fractal dimension around a point in the main paper.

Recall that k entries are selected as cluster centers for partitioning the

database to result in clusters with maximum radius rc. From the definition

above, when setting ρ = rc, it is trivial to verify k ≤ Nrc(D). This upper

bound is guaranteed by our requirement that the cluster centers not be within

distance rc.

Given any query q, the coarse search over the cluster centers always re-

quires k comparisons. Additionally, the fine search is over the set F , defined

to be the union of clusters with centers within distance r + rc from q. As the

S4

time-complexity of similarity search is just the total of the coarse and fine

searches, this implies that the total search time is O(k + |F |).

By the triangle inequality, F ⊂ BD(q, r + 2rc), so we can bound |F | ≤

|BD(q, r + 2rc)|. Let the fractal dimension D at the scale between rc and

2rc + r be d. Recall that the local fractal dimension determines how many

more points we hit when we scale the radius of a sphere. Then in expectation

over possible queries q,

|BD(q, r + 2rc)| ∼ |BD(q, r)|
(

r + 2rc

r

)d

,

because we are measuring the relative number of points found in spheres of

radius r vs radius r + 2rc respectively. Thus, total search time is

O

(
k + |BD(q, r)|

(
r + 2rc

r

)d
)

.

However, note that k is linear in metric entropy and |BD(q, r)| is the output

size, so similarity search can be performed in time linear to metric entropy

and a polynomial factor of output size. Provided that the fractal dimension

d is small and k is large, the search time will be dominated by the metric

entropy component, which turns out to be the regime of greatest interest for

us. We have thus proven bounds for the time-complexity of similarity search.

Space-complexity

Here we relate the space-complexity of our entropy-scaling similarity

search data structure to information-theoretic entropy. Traditionally, information-

theoretic entropy is a measure of the uncertainty of a distribution or random

variable and is not well-defined for a finite database. However, the notion of

S5

information-theoretic entropy is often used in data compression as a short-

hand for the number of bits needed to encode the database, or a measure

of the randomness of that database. We use entropy in the former sense;

precisely, we define the entropy of a database as the number of bits needed

to encode that database, a standard practice in the field. Thus, we consider

entropy-compressed forms of the original database, such as that obtained by

Prediction by Partial Matching (PPM), Lempel-Ziv compression (e.g. Gzip),

or a Burrows-Wheeler Transform (as in Bzip2), and use their size as an esti-

mate of the entropy Sorig of the database.

For all commonly used compression techniques, decompression time is

linear in the size of the uncompressed data. Obviously, even with linear

decompression, decompressing the entire database for each similarity search

would squander the entropy-scaling benefits of our approach. However, note

that the fine search detailed above only needs access to a subset of clusters

and furthermore needs full access to that set of clusters. It is therefore always

asymptotically ‘free’ to decompress an entire cluster at once, if any member

of that cluster needs to accessed. Thus, one ready solution is to simply store

entropy-compressed forms of each cluster separately.

Compressing each cluster separately preserves runtime bounds, but makes

it difficult to compare the compressed clustered database size to the original

compressed database size. This results from the possibility that redundancy

across clusters that would originally have been exploited by the compressor

can no longer be exploited once the database is partitioned. Intuitively, for

any fixed-window or block compressor, grouping together similar items into

clusters should increase the performance of the compressor, but it is unclear

S6

a priori if that balances out the loss of redundancy across clusters.

A somewhat more sophisticated solution is to reorder the entries of the

database by cluster, compress the entire database, and then store indexes

into the starting offset of each cluster. For popular tools such as Gzip or

Bzip2, this is possible with constant overhead κ per index. Because the

entire database is still being compressed, redundancy across clusters can be

exploited to reduce compressed size, while still taking advantage of similar

items being grouped together. Thus, in expectation over uniformly-randomly

chosen orderings of the database entries (obviously, there is some optimal

ordering, but computing that is computationally infeasible), the compressed

clustered database size Sclust ≤ Sorig. Then, total expected space-complexity

of our data structure is O(κk + Sorig); recall here that k is the number of

clusters and is bounded by the metric entropy of the database. Thus, space

complexity is linear in metric entropy plus information-theoretic entropy.

Additionally, given that our distance function measures marginal information-

theoretic entropies, we can also give a bound on the total information-

theoretic entropy of the database by using metric entropy and the cluster

radius. Let l be the maximum distance of two points in the space. The näıve

upper bound on total entropy is then O(nl), where n is the total number of

points in the database, because distance and entropy are related. Recall that

we chose k points as cluster centers, where k is bounded by metric entropy, for

a maximum cluster radius rc. Encoding each non-center point p as a function

of the nearest cluster center requires O(nrc) bits. Specifying the privileged

points again requires O(kl) bits, so together the total information-theoretic

entropy is O(kl+nrc). In other words, not only is space complexity linear in

S7

metric entropy plus information-theoretic entropy, but information-theoretic

entropy itself is also bounded by the low-dimensional coarse structure of the

database.

Clustering time complexity

Although clustering the database is a one-time cost that can further be

amortized over future queries, we still require that cluster generation be

tractable. Here we present a trivial O(kn) algorithm for cluster generation

with clusters of maximum radius rc that appears to work sufficiently well in

practice (and is the algorithm used in esFragBag):

• Initialize an empty set of cluster centers C. Let δ(x,C) be the distance

from a point x to C, defined to be ∞ if C = ∅.

• Randomly order the n entries of the database D = {d1, . . . , dn}

• For i = 1, . . . n,

– If δ(di, C) > rc, append di to C.

• For i = 1, . . . n,

– Assign di to the cluster represented by the nearest item in C.

Because we need to compare each of n items against up to k items in C in

each of the for loops, this trivial algorithm takes O(kn) time.

Additionally, insertions can be performed in O(k) time. For a new entry

dn+1, if δ(dn+1, C) ≤ rc, assign dn+1 to the cluster represented by the nearest

item in C. Otherwise, append dn+1 to C as a new cluster center. This clearly

requires exactly k comparisons to do. Note that with insertions of this kind,

S8

items are no longer guaranteed to be assigned to the nearest cluster center;

however, they are still guaranteed to be assigned to some cluster center within

distance rc, which is all that is needed for entropy-scaling to work.

Deletions are slightly more complicated. If the entry to be deleted is not

a cluster center, then removing it takes constant time. However, if it is a

cluster center, we effectively have to remove the entire cluster and reinsert

all the non-center elements, which will take O(k · [size of cluster]). Thus, in

expectation over a uniform random choice of item to be deleted, deletions

can also be performed in O(k) time.

Ammolite

Simplification and compression

Given a molecular graph, any vertex or edge that is not part of a simple

cycle or a tree is removed, and any edge that is part of a tree is removed.

This preserves the node count, but not the topology, of tree-like structures,

and preserves simple cycles, which represent rings in chemical compounds.

For example, as shown in Figure S2, both caffeine and adenine would be

reduced to a purine-like graph.

After this transformation is applied to each molecule in a database to be

compressed, we identify all clusters of fully-isomorphic transformed molec-

ular graphs. Isomorphism detection is performed using the VF2 (Cordella

et al., 2001) algorithm; a simple hash computed from the number of vertices

and edges in each transformed molecular graph is first used to filter molec-

ular graphs that cannot possibly be isomorphic. A representative from each

such cluster is stored in SDF format; collectively, these representatives form

S9

a “coarse” database. Along with each representative, we preserve the infor-

mation necessary to reconstruct each original molecule, as a pointer to a set

of vertices and edges that have been removed or unlabeled.

Ammolite is implemented in Java, and its source code is available on

Github.

MICA

Alphabet Reduction

Alphabet reduction—reducing the 20-letter standard amino acid alpha-

bet to a smaller set, in order to accelerate search or improve homology

detection—has been proposed and implemented several times (Bacardit et al.,

2007; Peterson et al., 2009). In particular, Murphy et al. (2000) considered

reducing the amino-acid alphabet to 17, 10, or even 4 letters. More recently,

Zhao et al. (2012) and Huson & Xie (2013) applied a reduction to a 4-letter

alphabet, termed a “pseudoDNA” alphabet, in sequence alignment.

When using BLASTX for coarse search, we extend the compression ap-

proach of Daniels et al. (2013) using a reversible alphabet reduction. We use

the alphabet reduction of Murphy et al. (2000) to map the standard amino

acid alphabet (along with the four common ambiguous letters) onto a 4-

letter alphabet. Specifically, we map F, W, and Y into one cluster; C, I, L,

M, V, and J into a second cluster, A, G, P, S, and T into a third cluster,

and D, E, N, Q, K, R, H, B, and Z into a fourth cluster. By storing the

offset of the original letter within each cluster, the original sequence can be

reconstructed, making this a reversible reduction. This alphabet reduction

is not used when using DIAMOND for coarse search, as DIAMOND already

S10

relies on its own alphabet reduction.

Database Compression

Given a protein sequence database to be compressed, we proceed as fol-

lows:

1. First, initialize a table of all possible k-mer seeds of our (possibly 4-

letter reduced) alphabet, as well as a coarse database of sequences,

initially containing the (possibly reduced-alphabet) first sequence in

the input database.

2. For each k-mer of the first sequence, store its position in the corre-

sponding entry in the seed table.

3. For each subsequent sequence s in the input, reduce its alphabet and

slide a window of length k along the sequence, skipping single-letter

repeats of length greater than 10.

4. (a) Look up these k residues in the seed table. For every entry match-

ing to that k-mer in the seed table, follow it to a corresponding

subsequence in the coarse database and attempt extension (de-

fined below). If no subsequences from this window can be ex-

tended, move the window by m positions, where m defaults to

20.

(b) If a match was found via extension, move the k-mer window to the

first k-mer in s after the match, and repeat the extension process.

Given a k-mer in common between sequence s and a subsequence s′

pointed to by the seed table, first attempt ungapped extension:

S11

1. Within each window of length m beginning with a k-mer match, if there

are at least 60% matches between s and s′, then there is an ungapped

match.

2. Continue ungapped matching using m-mer windows until no more m-

mers of at least 60% sequence identity are found.

3. The result of ungapped extension is that there is an alignment between

s and s′ where the only differences are substitutions, at least 60% of

the positions contain exact matches.

When ungapped extension terminates, attempt gapped extension. From

the end of the aligned regions thus far, align 25-mer windows of both s and s′

using the Needleman-Wunsch (Needleman & Wunsch, 1970) algorithm using

an identity matrix. Note that the original caBLASTP (Daniels et al., 2013)

used BLOSUM62 as it was operating in amino acid space; as we are now

operating in a reduced-alphabet space, an identity matrix is appropriate,

just as it is for nucleotide space. After gapped extension on a window length

of 25, attempt ungapped extension again.

If neither gapped nor ungapped extension can continue, end the extension

phase. If the resulting alignment has less than 70% sequence identity (in

the reduced-alphabet space), or is shorter than 40 residues, discard it, and

attempt extension on the next entry in the seed table for the original k-mer,

continuing on to the next k-mer if there are no more entries.

If the resulting alignment does have at least 70% sequence identity in

the reduced-alphabet space, and is at least 40 residues long, then create a

link from the entry for s′ in the coarse database to the subsequence of s

corresponding to the alignment. If there are unaligned ends of s shorter than

S12

30 residues, append them to the match. Longer unaligned ends that did not

match any subsequences reachable from the seed table are added into the

coarse database themselves, following the same k-mer indexing procedure as

the first sequence.

Finally, in order to be able to recover the original sequence with its orig-

inal amino acid identities, a difference script is associated with each link.

This difference script is a representation of the insertions, deletions, and

substitutions resulting from the Needleman-Wunsch alignment, along with

(if alphabet reduction is used) the offset in each reduced-alphabet cluster

needed to recover the original alphabet. Thus, for example, a valine (V) is

in the cluster containing C, I, L, M, V, and J. Since it is the 4th entry in

that 5-entry cluster, we can represent it with the offset 4. Since the largest

cluster contains 9 elements, only four bits are needed to store one entry in the

difference script. More balanced clusters would have allowed 3-bit storage,

but at the expense of clusters that less faithfully represented the BLOSUM62

matrix and the physicochemical properties of the constituent amino acids.

Because of the seed table, compression is memory-intensive and CPU-

intensive. Compressing the September, 2014 NCBI NR database required

approximately 39 hours on a 12-core Xeon with 128GB RAM.

Query Clustering

Metagenomic reads are themselves nucleotide sequences, so no alphabet

reduction is performed on them directly. When BLASTX is used for coarse

search, MICA relies on query-side clustering. Metagenomic reads are com-

pressed using the same approach as the protein database, without the alpha-

bet reduction step and with a number of different parameters. The difference

S13

scripts for metagenomic reads do not rely on the cluster offsets, but simply

store the substituted nucleotides.

Furthermore, unlike protein databases, where most typical sequences

range in length from 100 to over 1000 amino acids, next-generation sequenc-

ing reads are typically short and usually of fixed length, which is known in

advance. Thus, the minimum alignment length required for a match, and the

maximum length unaligned fragment to append to a match, require different

values based on the read length.

An additional complication is that insertions and deletions from one read

to another will change the reading frame, potentially resulting in different

amino acid sequences. For this reason, query clustering requires long, un-

gapped windows of high sequence identity. Specifically, for 202-nucleotide

reads, for two sequences to cluster together, we require a 150-nucleotide un-

gapped region of at least 80% sequence identity.

We note that unlike the compression of the database, which can be amor-

tized over future queries, the time spent clustering and compressing the

queries cannot be amortized. Thus, we would not refer to the query clus-

tering as entropy-scaling, but it still provides a constant speed-up. For this

reason, we include the time spent clustering and compressing queries in the

search time for MICA.

Search

Given a compressed protein database and a compressed query read set,

search comprises two phases. The first, coarse search, considers only the

coarse sequences—the representatives—resulting from compression of the

protein database and the query set. When BLASTX is used for the coarse

S14

search, each coarse nucleotide read is transformed into each of the six possible

amino acid sequences that could result from it (three reading frames for both

the sequence and its reverse complement). Then, each of these amino acid

sequences is then reduced back to a four-letter alphabet using the same map-

ping as for protein database compression. For convenience, the four-letter

alphabet is represented using the standard nucleotide bases, though this has

no particular biological significance. This is done so that the coarse search

can rely on BLASTN (nucleotide BLAST) to search these sequences against

the compressed protein database.

For each coarse query representative (identified using a a coarse E-value of

1000, along with the BLASTN arguments -task blastn-short -penalty

-1; these arguments are recommended by the NCBI BLAST+ manual when

queries are short), the set of coarse hits is used to reconstruct all corre-

sponding sequences from the original database by following links to original

sequence matches and applying their difference scripts. The resulting candi-

dates are thus original sequences from the protein database, in their original

amino acid alphabet. The query representative is also used to reconstruct

all corresponding sequences from the original read set. Thus, for each coarse

query representative, there is now a subset of the metagenomic read set (the

reads represented by that coarse query) and also a subset of the protein

database (the candidates).

When DIAMOND is used for coarse search, instead of an E-value thresh-

old, the argument --top 60 is used; this causes DIAMOND to return all

coarse hits whose score is within 60% of the top-scoring hit. Without this

argument, DIAMOND defaults to returning at most 25 hits for each query

S15

sequence, which would result in significant loss of recall.

The second phase, fine search, uses standard DIAMOND or BLASTX to

translate each of these reads associated with a coarse query representative

and search for hits only in the subset of the database comprising the candi-

dates. This fine search phase relies on a user-specified E-value threshold (or

other user-specified parameters to DIAMOND or BLASTX) to filter hits. To

ensure that E-value calculation is correct, BLASTX uses a corrected database

size which is the size of the original, uncompressed protein database.

Benchmarking

Although our primary result is the direct acceleration of BLASTX using

our entropy-scaling data structures, we also compared MICA to RapSearch2 (Zhao

et al., 2012) version 2.22 and the November 29, 2014 version of DIAMOND (Buchfink

et al., 2015). All tests were performed on a 12-core Intel Xeon X5690 running

at 3.47GHz with 88GB RAM and hyperthreading; 24 threads were allowed

for all programs. Diamond was run with the --sensitive option. In all

cases, an E-value threshold of 1e-7 was used.

For the raw-read dataset, we filtered out reads starting or ending with 10

or more no-calls (’N’).

MICA is implemented in Go, and its source code is available on Github.

esFragBag

We took the existing FragBag method as a black box and by design did

not do anything clever in esFragBag except apply the entropy-scaling simi-

larity search data structure. We used a Go language implementation of Frag-

Bag, written by Andrew Gallant. Additionally, we removed the sorting-by-

S16

distance feature of Andrew Gallant’s FragBag search implementation, which

does not improve the all-matching results we were interested in here—it low-

ers k-nearest neighbor search memory requirements while dominating the

running time of ρ-nearest neighbor, the problem at hand. This was done for

both the FragBag and the esFragBag benchmarks, to ensure comparability.

All code was written in Go, and is available on Github.

The entire 2014 Oct 31 version of the Protein Data Bank was downloaded

and the database was composed of fragment frequency vectors generated from

all of the relevant PDB files using the 400-11.json fragment list (Budowski-

Tal et al., 2010). For this paper, we implemented the benchmarking in Go,

and have provided the source code for the benchmarking routine on Github.

This allowed us to benchmark just the search time, excluding the time to

load the database from disk. Note that the prototype implementation of

esFragBag available only supports the all ρ-nearest neighbor search query

found in FragBag.

Supplemental References

Bacardit, J., Stout, M., Hirst, J. D., Sastry, K., Llorà, X., & Krasnogor,

N. (2007). Automated alphabet reduction method with evolutionary algo-

rithms for protein structure prediction. In Proceedings of the 9th annual

conference on Genetic and evolutionary computation (pp. 346–353). ACM.

Buchfink, B., Xie, C., & Huson, D. H. (2015). Fast and sensitive protein

alignment using DIAMOND. Nature methods, 12, 59–60.

Budowski-Tal, I., Nov, Y., & Kolodny, R. (2010). FragBag, an accurate

S17

representation of protein structure, retrieves structural neighbors from the

entire PDB quickly and accurately. Proceedings of the National Academy

of Sciences, 107, 3481–3486.

Cordella, L. P., Foggia, P., Sansone, C., & Vento, M. (2001). An improved

algorithm for matching large graphs. In 3rd IAPR-TC15 workshop on

graph-based representations in pattern recognition (pp. 149–159).

Daniels, N. M., Gallant, A., Peng, J., Cowen, L. J., Baym, M., & Berger, B.

(2013). Compressive genomics for protein databases. Bioinformatics, 29,

i283–i290.

Falconer, K. (1990). Fractal geometry: mathematical foundations and appli-

cations . John Wiley & Sons.

Ferragina, P., & Manzini, G. (2000). Opportunistic data structures with

applications. In Foundations of Computer Science, 2000. Proceedings. 41st

Annual Symposium on (pp. 390–398). IEEE.

Grossi, R., & Vitter, J. S. (2005). Compressed suffix arrays and suffix trees

with applications to text indexing and string matching. SIAM Journal on

Computing, 35, 378–407.

Huson, D. H., & Xie, C. (2013). A poor man’s BLASTX-high-throughput

metagenomic protein database search using PAUDA. Bioinformatics, (p.

btt254).

Jacobson, G. J. (1988). Succinct static data structures. Ph.D. thesis Carnegie

Mellon University.

S18

Murphy, L. R., Wallqvist, A., & Levy, R. M. (2000). Simplified amino acid

alphabets for protein fold recognition and implications for folding. Protein

Engineering, 13, 149–152.

Needleman, S. B., & Wunsch, C. D. (1970). A general method applicable

to the search for similarities in the amino acid sequence of two proteins.

Journal of molecular biology, 48, 443–453.

Peterson, E. L., Kondev, J., Theriot, J. A., & Phillips, R. (2009). Reduced

amino acid alphabets exhibit an improved sensitivity and selectivity in fold

assignment. Bioinformatics, 25, 1356–1362.

Prat, Y., Fromer, M., Linial, N., & Linial, M. (2011). Recovering key biolog-

ical constituents through sparse representation of gene expression. Bioin-

formatics, 27, 655–661.

Tao, T. (2008). Product set estimates for non-commutative groups. Combi-

natorica, 28, 547–594.

Zhao, Y., Tang, H., & Ye, Y. (2012). RAPSearch2: a fast and memory-

efficient protein similarity search tool for next-generation sequencing data.

Bioinformatics, 28, 125–126.

S19

Supplemental Figures

S1 Genomic data available has grown at a faster exponential rate
than computer processing power and disk storage. These plots
represent, on a log scale, the daily growth in sequence data
from GenBank along with (a) the combined computing power
(in TeraFLOPs) of the Top 500 Supercomputer list, and (b)
the largest commercially-available hard disk drives.

S2 (Related to Table 2) Ammolite’s preprocessing during the
clustering phase. Ammolite removes nodes and edges that do
not participate in simple cycles, and treats all edges as simple,
unlabeled edges. In this example, both caffeine and adenine
become a purine-like graph structure. Note that the resulting
graph has no implicit hydrogens.

S3 (Related to Figure 3)Local fractal dimension at different
scales for the space of PDB FragBag frequency vectors. Each
data point is defined by dimension d = log(n2/n1)

log(r2/r1)
, where n1, n2

are the number of similarity search hits within radius respec-
tively r1, r2, and r2 − r1 is the increment size of 0.01 for cosine
distance and 1 for euclidean distance. In most regimes, local
fractal dimension is consistently low, except for a large spike
when radius expands to include the central cluster of proteins.
esFragBag achieves the most acceleration when both output
size is small and we remain in a low fractal dimension regime.

20

(a) (b)

Figure S1: Genomic data available has grown at a faster exponential rate
than computer processing power and disk storage. These plots represent, on a
log scale, the daily growth in sequence data from GenBank along with (a) the
combined computing power (in TeraFLOPs) of the Top 500 Supercomputer
list, and (b) the largest commercially-available hard disk drives.

S21

N

C

C

C

C

N

N

N

C

Figure S2: (Related to Table 2) Ammolite’s preprocessing during the
clustering phase. Ammolite removes nodes and edges that do not participate
in simple cycles, and treats all edges as simple, unlabeled edges. In this
example, both caffeine and adenine become a purine-like graph structure.
Note that the resulting graph has no implicit hydrogens.

S22

(a) Cosine distance (b) Euclidean distance

Figure S3: (Related to Figure 3) Local fractal dimension at different
scales for the space of PDB FragBag frequency vectors. Each data point is
defined by dimension d = log(n2/n1)

log(r2/r1)
, where n1, n2 are the number of similarity

search hits within radius respectively r1, r2, and r2−r1 is the increment size of
0.01 for cosine distance and 1 for euclidean distance. In most regimes, local
fractal dimension is consistently low, except for a large spike when radius
expands to include the central cluster of proteins. esFragBag achieves the
most acceleration when both output size is small and we remain in a low
fractal dimension regime.

	Supplemental Methods
	Theory
	Time-complexity
	Complexity bounds
	Space-complexity
	Clustering time complexity

	Ammolite
	Simplification and compression

	MICA
	Alphabet Reduction
	Database Compression
	Query Clustering
	Search
	Benchmarking

	esFragBag

